Ancestral Maximum Likelihood of Evolutionary Trees Is Hard

نویسندگان

  • Louigi Addario-Berry
  • Benny Chor
  • Michael T. Hallett
  • Jens Lagergren
  • Alessandro Panconesi
  • Todd Wareham
چکیده

Maximum likelihood (ML) (Neyman, 1971) is an increasingly popular optimality criterion for selecting evolutionary trees. Finding optimal ML trees appears to be a very hard computational task--in particular, algorithms and heuristics for ML take longer to run than algorithms and heuristics for maximum parsimony (MP). However, while MP has been known to be NP-complete for over 20 years, no such hardness result has been obtained so far for ML. In this work we make a first step in this direction by proving that ancestral maximum likelihood (AML) is NP-complete. The input to this problem is a set of aligned sequences of equal length and the goal is to find a tree and an assignment of ancestral sequences for all of that tree's internal vertices such that the likelihood of generating both the ancestral and contemporary sequences is maximized. Our NP-hardness proof follows that for MP given in (Day, Johnson and Sankoff, 1986) in that we use the same reduction from Vertex Cover; however, the proof of correctness for this reduction relative to AML is different and substantially more involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood of Evolutionary Trees Is Hard

Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evolutionary trees (Felsenstein, 1981). Finding optimal ML trees appears to be a very hard computational task, but for tractable cases, ML is the method of choice. In particular, algorithms and heuristics for ML take longer to run than algorithms and heuristics for the second major character based criterion, m...

متن کامل

PAML: a program package for phylogenetic analysis by maximum likelihood

PAML, currently in version 1.2, is a package of programs for phylogenetic analyses of DNA and protein sequences using the method of maximum likelihood (ML). The programs can be used for (i) maximum likelihood estimation of evolutionary parameters such as branch lengths in a phylogenetic tree, the transition/transversion rate ratio, the shape parameter of the gamma distribution for variable evol...

متن کامل

Reconstructing ancestral character states: a critical reappraisal.

Using parsimony to reconstruct ancestral character states on a phylogenetic tree has become a popular method for testing ecological and evolutionary hypotheses. Despite its popularity, the assumptions and uncertainties of reconstructing the ancestral states of a single character have received less attention than the much less challenging endeavor of reconstructing phylogenetic trees from many c...

متن کامل

Finding the Maximum Likelihood Tree is Hard

Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evolutionary trees (Felsenstein, 1981). Finding optimal ML trees appears to be a very hard computational task, but for tractable cases, ML is the method of choice. In particular, algorithms and heuristics for ML take longer to run than algorithms and heuristics for the second major character based criterion, m...

متن کامل

Maximum likelihood of evolutionary trees: hardness and approximation

MOTIVATION Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evolutionary trees. Yet the computational complexity of ML was open for over 20 years, and only recently resolved by the authors for the Jukes-Cantor model of substitution and its generalizations. It was proved that reconstructing the ML tree is computationally intractable (NP-hard). In this work we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 2 2  شماره 

صفحات  -

تاریخ انتشار 2003